ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ

16:35, 5 Долоодугаар сар 2021-ий байдлаарх Theirontnt (яриа | оруулсан хувь нэмэр) хэрэглэгчийн хийсэн залруулга

ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠣᠯ ᠥᠪᠡᠷ ᠲᠦ ᠢᠨᠦ ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠳ᠋ᠦ -1 ᠭᠠᠷᠳᠠᠭ ᠲᠣᠭ᠎ ‍ᠠ᠋ ᠶᠤᠮ᠃

ᠥᠭᠡᠷ ‍ᠡ᠋ ᠪᠡᠷ ᠬᠡᠯᠡᠪᠡᠯ ᠻᠸᠠᠲᠷᠠᠲ᠋quadratic ᠵᠡᠷᠭᠡ ᠢᠨᠦ -1 ᠤᠳᠬ ‍ᠠ᠋ ᠠᠪᠳᠠᠭ (i2 = -1) ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠨ᠎ ‍ᠡ᠋᠃

ᠪᠠᠰᠠ -1 ‍ᠢᠢᠨ ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ ᠠᠨᠤ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠵᠦ ᠬᠡᠯᠡᠵᠦ ᠪᠣᠯᠤᠨ᠎ ‍ᠠ᠋:

ᠨᠥᠭᠦᠭᠡᠲᠡᠭᠦᠷ᠂ ᠪᠤᠶᠤ ᠬᠠᠰᠠᠬᠤ ᠨᠢᠭᠡ ‍ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ‍ᠤᠨ ᠰᠢᠢᠳᠦᠯ ᠢᠨᠦ ᠲᠡᠳᠦᠢ ᠦᠭᠡᠢ ᠪᠠᠰᠠ ᠪᠠᠢᠢᠬᠤ ᠶᠤᠮ᠃[1]

ᠠᠩᠭᠯᠢ ᠪᠠᠷ imaginary unit, ᠣᠷᠤᠰ ‍ᠢᠢᠠᠷ мнимая единица ᠬᠡᠮᠡᠬᠦ ᠡᠨᠡ ᠤᠬᠠᠭᠳᠠᠬᠤᠨ ᠠᠨᠤ ᠲᠥᠰᠦᠭᠡᠯᠡᠯ ᠨᠢᠭᠡᠴᠡ᠂ ᠲᠥᠰᠦᠭᠡᠯᠡᠭᠰᠡᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠣᠭᠤᠰᠤᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠡᠢᠢᠰᠪᠦᠷᠢ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠰᠡᠨ ᠤᠳᠬ ‍ᠠ᠋ ᠲᠠᠢ᠃

ᠬᠠᠯᠢᠮᠠᠭ ᠲᠦᠮᠡᠨ imaginary number ᠬᠡᠮᠡᠬᠦᠢ ‍ᠢᠢ ухалдаг тойг (ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠲᠣᠭ᠎ᠠ) ᠬᠡᠮᠡᠨ ᠪᠠᠭᠤᠯᠭᠠᠭᠰᠠᠨ ᠪᠠᠢᠢᠬᠤ ᠲᠤᠯᠠ imaginary unit ᠭᠡᠳᠡᠭ ‍ᠢ ᠪᠠᠰᠠ "ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠨᠢᠭᠡᠴᠡ" ᠭᠡᠵᠦ ᠪᠠᠭᠤᠯᠭᠠᠳᠠᠭ ᠪᠤᠢ ᠵᠠ᠃

ᠬᠠᠷᠢᠨ комплексное число ᠭᠡᠳᠡᠭ ‍ᠢ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ᠎ᠡ ᠲᠣᠮᠢᠶᠠᠨ  ᠤ ᠲᠣᠯᠢ ᠳ᠋ᠤ "ᠬᠠᠪᠰᠤᠷᠠᠭᠰᠠ ᠲᠣᠭ᠎ᠠ" (ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰcomplex ᠲᠣᠭ᠎ᠠ) ᠬᠡᠮᠡᠵᠦᠬᠦᠢ᠃[2]


ᠢᠵᠢ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷ ‍ᠡ᠋ ᠦᠵᠡᠭᠦᠯᠦᠭᠰᠡᠨ ᠪᠣᠳᠠᠲᠤ ᠪᠠ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠲᠡᠩᠬᠡᠯᠢᠭ ᠬᠢᠭᠡᠳ ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ᠎ ‍ᠠ᠋ 1 ᠪᠠ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ i




ᠵᠠᠷᠢᠮ ᠦᠢᠯᠡᠳᠦᠯ


ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠤᠶᠤ i ᠲᠣᠭᠠᠨ ᠳ᠋ᠦ ᠦᠷᠡᠵᠢᠬᠦᠯᠦᠭᠰᠡᠨ ‍ᠢᠢᠡᠷ᠄





ᠭᠠᠷᠤᠮᠤᠢ᠃

ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ‍ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ‍ᠢvector ᠨᠠᠷᠠ ᠪᠤᠷᠤᠭᠤ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ‍ᠠ᠋᠃

ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ ᠨᠢ i ᠲᠣᠭᠠᠨ ‍ᠤ ᠤᠷᠪᠠᠭᠤ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ:





ᠡᠭᠦᠨ ‍ᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠬᠡᠷᠡᠭᠯᠡᠪᠡᠰᠦ:




ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ‍ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ‍ᠢvector ᠨᠠᠷᠠ ᠵᠥᠪ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ‍ᠠ᠋᠃


ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ

ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ ᠨᠢ ᠮᠥᠴᠢᠯᠭᠡ ᠪᠡᠷ ᠳᠠᠪᠲᠠᠭᠳᠠᠬᠤ ᠰᠢᠨᠵᠢ ᠴᠢᠨᠠᠷ ᠲᠠᠢ:[3]


i0 = 1 i1 = i i2 = -1 i3 = i2 • i = (-1) • i = -i
i4 = i3 • i = (-i) • i = -i2 = 1 i5 = i4 • i = 1 • (i) = i i6 = i4 • i2 = 1 • (-1) =-1 i7= i4 • i3 = 1 • (-i) = -i
i8 = i4 • i4 = 1 • 1 = 1 i9= i4 • i4 • i = 1 • 1• i = i i10 = (i4)2 • i2 = 1 • (-1) = -1 i11 = (i4)2 • i3 = 1 • (-i) = -i


ᠡᠭᠦᠨ ‍ᠢ ᠶᠡᠷᠦᠩᠬᠡᠢᠢᠯᠡᠭᠰᠡᠨ ᠬᠡᠯᠪᠡᠷᠢ ‍ᠪᠡᠷ ᠪᠢᠴᠢᠪᠡᠯ᠄








ᠡ᠊ᠨᠳᠡ ᠡᠴᠡ᠄

ᠡᠩ ‍ᠦᠨ ‍ᠢᠢᠡᠷ ᠠᠷᠭᠠᠴᠢᠯᠠᠪᠠᠰᠤ᠂ i ᠲᠣᠭᠠᠨ ‍ᠤ ᠵᠡᠷᠭᠡ ‍ᠢᠢ ᠲᠣᠳᠤᠷᠬᠠᠶ᠋ᠢᠯᠠᠬᠤ ‍ᠢᠢᠨ ᠲᠤᠯᠠᠳᠠ ᠡᠬᠢᠯᠡᠭᠡᠳ ᠢᠯᠡᠳᠬᠡᠭᠴᠢ ‍ᠢᠢ[4] 4 ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠮᠤᠢ᠃


ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 0 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ‍ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ

ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 1 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ‍ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ

ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 2 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ‍ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ

ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 3 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ‍ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ

ᠪᠠᠢᠢᠨ᠎ᠠ ᠬᠡᠮᠡᠨ ᠲᠣᠭᠲᠠᠭᠠᠵᠤ ᠪᠣᠯᠤᠨ᠎ᠠ᠃

ᠢᠢᠨ ᠬᠦ᠂ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ‍ᠢᠢ ᠠᠯᠢᠮᠠᠳ ᠪᠦᠬᠦᠯᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠥᠭᠦᠯᠪᠡᠯ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ - ᠡᠳᠡᠭᠡᠷ ‍ᠦᠨ ᠨᠢᠭᠡ ᠢᠮᠠᠭᠲᠠ ᠪᠠᠢᠢᠬᠤ ᠠᠵᠤᠭᠤ᠃


ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ




ᠡᠭᠦᠨ ᠳ᠋ᠦ k ∈ ℤ ᠪᠤᠶᠤ ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢᠨ ᠣᠯᠠᠨᠯᠢᠭ᠃

k = 0 ᠪᠠᠢᠢᠭ᠎ ‍ᠠ᠋ ᠨᠥᠭᠦᠴᠡᠯ ᠳ᠋ᠦ ᠦᠨᠳᠦᠰᠦᠨ ᠤᠳᠬ ‍ᠠ᠋ ᠨᠢ eπ/2 ᠪᠤᠶᠤ ᠣᠢᠢᠷᠠᠯᠴᠠᠭ᠎ ‍ᠠ᠋ ᠪᠠᠷ 0.207879576 ᠪᠣᠯᠤᠨ᠎ ‍ᠠ᠋᠃[5][6]


ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠡᠴᠡ ᠢᠵᠠᠭᠤᠷ ᠭᠠᠷᠭᠠᠬᠤ


i ᠲᠣᠭᠠᠨ ‍ᠤ ᠺᠦ᠋ᠪcubic ᠢᠵᠠᠭᠤᠷ ᠨᠢ ᠭᠤᠷᠪᠠᠯᠵᠢᠨ ‍ᠤ ᠣᠷᠣᠢ ᠨᠤᠭᠤᠳ ᠋ᠲᠤ ᠬᠠᠷᠠᠭᠠᠯᠵᠠᠮᠤᠢ᠃


ᠲᠣᠭᠠᠨ ‍ᠤ n ᠵᠡᠷᠭᠡ ‍ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠨᠢ n ᠲᠣᠭᠠᠨ ‍ᠤ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠨ᠎ ‍ᠠ᠋᠃

ᠬᠡᠳᠦᠨ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠬᠤ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳ᠋ᠤ ᠭᠠᠷᠬᠤ n-ᠥᠨᠴᠦᠭᠲᠦ ‍ᠢᠢᠨ ᠥᠨᠴᠦᠭ ‍ᠦᠨ ᠲᠣᠭ᠎ ‍ᠠ᠋ ᠪᠠᠷ ᠪᠠᠢᠢᠨ᠎ ‍ᠠ᠋᠃






ᠲᠣᠭᠠᠨ ‍ᠤ
ᠺᠸᠠᠲᠷᠠᠲ
ᠢᠵᠠᠭᠤᠷ᠄



ᠲᠣᠭᠠᠨ ‍ᠤ
ᠺᠦᠪ
ᠢᠵᠠᠭᠤᠷ᠄


ᠲᠣᠭᠠᠨ ᠡᠴᠡ ᠵᠡᠷᠭᠡ ‍ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠭᠠᠷᠭᠠᠬᠤ






ᠨᠡᠷ ‍ᠡ᠋ ᠲᠣᠮᠢᠶᠠᠯᠠᠯ

ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ - imaginary unit - мнимая единица

ᠬᠠᠭᠤᠷᠮᠠᠭ ᠲᠣᠭ᠎ ‍ᠠ᠋ - imaginary number - мнимое число

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ ‍ᠠ᠋ (ᠬᠠᠪᠰᠤᠷᠠᠭᠰᠠᠨ ᠲᠣᠭ᠎ ‍ᠠ᠋) - complex number - комплексное число

ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ᠎ ‍ᠠ᠋ - real number - вещественное число (действительное число)

ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ - multiplication - умножение

ᠬᠤᠪᠢᠶᠠᠬᠤ - division - деление

ᠵᠡᠷᠭᠡ - power - степень

ᠢᠵᠠᠭᠤᠷ - root - корень

ᠢᠯᠡᠳᠬᠡᠭᠴᠢ - exponent - экспонента

ᠦᠯᠡᠳᠡᠭᠳᠡᠯ - remainder - остаток

ᠣᠯᠠᠨᠯᠢᠭ - set - множество

ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ᠎ ‍ᠠ᠋ - integer - целое число


ᠡᠬᠢ ᠰᠤᠷᠪᠤᠯᠵᠢ

  1. James Tamton. Encyclopedia of Mathematics. Facts on File Inc. New York 2005. ISBN 0-8160-5124-0
  2. ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ‍ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ‍ᠤ ᠲᠣᠯᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ‍ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ‍ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ‍ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ‍ᠤᠨ ᠬᠡᠪᠯᠡᠯ ‍ᠦᠨ ᠬᠡᠷᠡᠭ ᠡᠷᠬᠢᠯᠡᠬᠦ ᠬᠣᠷᠢᠶ ‍ᠠ᠋᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1964᠃
  3. MathBits Notebook. Cyclic Nature of the Powers of "i ".https://mathbitsnotebook.com/Algebra2/ComplexNumbers/CPPowers.html ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/07/03
  4. ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ‍ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ‍ᠤ ᠲᠣᠯᠢ᠃ ᠬᠣᠶᠠᠳᠤᠭᠠᠷ ᠪᠣᠲᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ‍ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ‍ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ‍ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ‍ᠤᠨ ᠬᠡᠪᠯᠡᠯ ‍ᠦᠨ ᠭᠠᠵᠠᠷ᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1970᠃
  5. David Wells. The Penguin Dictionary of Curious and Interesting Numbers. UK: Penguin Books 1997. ISBN=0-14-026149-4
  6. Brilliant. What is i to the power of i. https://brilliant.org/discussions/thread/what-is-i-to-the-power-of-i-T. ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/017/04