ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ: Засвар хоорондын ялгаа
Layout |
Layout |
||
| (19 дундын хувилбарууд 2 хэрэглэгчид харагдахгүй) | |||
| 1-р мөр: | 1-р мөр: | ||
<div style="max-height: 80vh; writing-mode: vertical-lr; font-family: 'Noto Sans Mongolian'"> | <div style="max-height: 80vh; writing-mode: vertical-lr; font-family: 'Noto Sans Mongolian'"> | ||
<span style="color:Violet;">ᠦᠨᠳᠦᠰᠦᠨ ᠨᠡᠢᠢᠲᠡᠯᠡᠯ ᠢ ᠤᠩᠰᠢᠬᠤ ᠳ᠋ᠤ ᠰᠧᠷᠸᠧᠷ ᠦᠨ<sup>server</sup> ᠬᠦᠴᠦᠨ ᠴᠢᠳᠠᠯ ᠡᠴᠡ ᠰᠢᠯᠲᠠᠭᠠᠯᠠᠨ ᠮᠠᠲ᠋ᠾᠧᠮᠠᠲᠢᠺ ᠲᠣᠮᠢᠶᠠᠨ ᠨᠤᠭᠤᠳ ᠡᠪᠳᠡᠷᠡᠵᠦ ᠬᠠᠷᠠᠭᠳᠠᠵᠤ ᠪᠠᠢᠢᠪᠠᠯ ᠳᠠᠷᠠᠭᠠᠬᠢ ᠬᠣᠯᠪᠤᠭᠠᠰᠤ ᠪᠠᠷ ᠣᠷᠤᠵᠤ ᠤᠩᠰᠢᠨᠠ ᠤᠤ᠄</span> [[Хэлэлцүүлэг:ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ]] | |||
ᠥᠭᠡᠷ ᠡ᠋ ᠪᠡᠷ ᠬᠡᠯᠡᠪᠡᠯ ᠻᠸᠠᠲᠷᠠᠲ᠋ ᠵᠡᠷᠭᠡ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;" ><i>-1</i></span> ᠤᠳᠬ ᠠ᠋ ᠠᠪᠳᠠᠭ <span style="writing-mode: horizontal-tb;"><i>(i<sup>2</sup> = -1)</i></span> ᠲᠣᠭ ᠠ᠋ ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠨ ᠡ᠋᠃ | |||
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠣᠯ ᠥᠪᠡᠷ ᠲᠦ ᠢᠨᠦ ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠳ᠋ᠦ <span style="writing-mode: horizontal-tb;"><i>-1</i></span> ᠭᠠᠷᠳᠠᠭ ᠲᠣᠭ ᠠ᠋ ᠶᠤᠮ᠃ | |||
ᠥᠭᠡᠷ ᠡ᠋ ᠪᠡᠷ ᠬᠡᠯᠡᠪᠡᠯ ᠻᠸᠠᠲᠷᠠᠲ᠋<sup>quadratic</sup> ᠵᠡᠷᠭᠡ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;" ><i>-1</i></span> ᠤᠳᠬ ᠠ᠋ ᠠᠪᠳᠠᠭ <span style="writing-mode: horizontal-tb;"><i>(i<sup>2</sup> = -1)</i></span> ᠲᠣᠭ ᠠ᠋ ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠨ ᠡ᠋᠃ | |||
ᠪᠠᠰᠠ <span style="writing-mode: horizontal-tb;" ><i>-1</i></span> ᠢᠢᠨ ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ ᠠᠨᠤ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠵᠦ ᠬᠡᠯᠡᠵᠦ ᠪᠣᠯᠤᠨ ᠠ᠋: | ᠪᠠᠰᠠ <span style="writing-mode: horizontal-tb;" ><i>-1</i></span> ᠢᠢᠨ ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ ᠠᠨᠤ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠵᠦ ᠬᠡᠯᠡᠵᠦ ᠪᠣᠯᠤᠨ ᠠ᠋: | ||
:<math>i = \sqrt{-1}</math> | :<math>i = \sqrt{-1}</math> | ||
ᠨᠥᠭᠦᠭᠡᠲᠡᠭᠦᠷ᠂ <small><small><math>\sqrt{-1}</math></small></small> ᠪᠤᠶᠤ ᠬᠠᠰᠠᠬᠤ ᠨᠢᠭᠡ ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠤᠨ ᠰᠢᠢᠳᠦᠯ ᠢᠨᠦ <math>i</math> ᠲᠡᠳᠦᠢ ᠦᠭᠡᠢ ᠪᠠᠰᠠ <math>-i</math> ᠪᠠᠢᠢᠬᠤ ᠶᠤᠮ᠃<ref>James Tamton. Encyclopedia of Mathematics. Facts on File Inc. New York 2005. [[index.php?title=Special:BookSources/0816051240|ISBN 0-8160-5124-0]]</ref> | |||
ᠠᠩᠭᠯᠢ ᠪᠠᠷ imaginary unit, ᠣᠷᠤᠰ ᠢᠢᠠᠷ мнимая единица ᠬᠡᠮᠡᠬᠦ ᠡᠨᠡ ᠤᠬᠠᠭᠳᠠᠬᠤᠨ ᠠᠨᠤ ᠲᠥᠰᠦᠭᠡᠯᠡᠯ ᠨᠢᠭᠡᠴᠡ᠂ ᠲᠥᠰᠦᠭᠡᠯᠡᠭᠰᠡᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠣᠭᠤᠰᠤᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠡᠢᠢᠰᠪᠦᠷᠢ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠰᠡᠨ ᠤᠳᠬ ᠠ᠋ ᠲᠠᠢ᠃ | ᠠᠩᠭᠯᠢ ᠪᠠᠷ imaginary unit, ᠣᠷᠤᠰ ᠢᠢᠠᠷ мнимая единица ᠬᠡᠮᠡᠬᠦ ᠡᠨᠡ ᠤᠬᠠᠭᠳᠠᠬᠤᠨ ᠠᠨᠤ ᠲᠥᠰᠦᠭᠡᠯᠡᠯ ᠨᠢᠭᠡᠴᠡ᠂ ᠲᠥᠰᠦᠭᠡᠯᠡᠭᠰᠡᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠣᠭᠤᠰᠤᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠡᠢᠢᠰᠪᠦᠷᠢ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠰᠡᠨ ᠤᠳᠬ ᠠ᠋ ᠲᠠᠢ᠃ | ||
ᠬᠠᠯᠢᠮᠠᠭ ᠲᠦᠮᠡᠨ imaginary number ᠬᠡᠮᠡᠬᠦᠢ ᠢᠢ ухалдаг тойг (ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠲᠣᠭᠠ) ᠬᠡᠮᠡᠨ ᠪᠠᠭᠤᠯᠭᠠᠭᠰᠠᠨ ᠪᠠᠢᠢᠬᠤ ᠲᠤᠯᠠ imaginary unit ᠭᠡᠳᠡᠭ ᠢ ᠪᠠᠰᠠ "ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠨᠢᠭᠡᠴᠡ" ᠭᠡᠵᠦ ᠪᠠᠭᠤᠯᠭᠠᠳᠠᠭ ᠪᠤᠢ ᠵᠠ᠃ | |||
ᠬᠠᠷᠢᠨ комплексное число ᠭᠡᠳᠡᠭ ᠢ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷᠡ ᠲᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ ᠳ᠋ᠤ "ᠬᠠᠪᠰᠤᠷᠠᠭᠰᠠ ᠲᠣᠭᠠ" (ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ<sup>complex</sup> ᠲᠣᠭᠠ) ᠬᠡᠮᠡᠵᠦᠬᠦᠢ᠃<ref>ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ᠤᠨ ᠬᠡᠪᠯᠡᠯ ᠦᠨ ᠬᠡᠷᠡᠭ ᠡᠷᠬᠢᠯᠡᠬᠦ ᠬᠣᠷᠢᠶ ᠠ᠋᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1964᠃</ref> | |||
<br> | |||
{| class="wikitable" | |||
|+ | |||
|[[File:Complex Plane number i and 1.svg|thumb]] | |||
|style = "height: 150px;"|ᠢᠵᠢ ᠲᠣᠭ ᠠ᠋ ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷ ᠡ᠋ ᠦᠵᠡᠭᠦᠯᠦᠭᠰᠡᠨ ᠪᠣᠳᠠᠲᠤ ᠪᠠ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠲᠡᠩᠬᠡᠯᠢᠭ ᠬᠢᠭᠡᠳ ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ ᠠ᠋ <span style="writing-mode: horizontal-tb;"><i>1</i></span> ᠪᠠ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ <span style="writing-mode: horizontal-tb;"><i>i</i></span>᠃ | |||
|} | |||
<br> | |||
__TOC__ | __TOC__ | ||
<br> | <br> | ||
== ᠵᠠᠷᠢᠮ ᠦᠢᠯᠡᠳᠦᠯ == | == ᠵᠠᠷᠢᠮ ᠦᠢᠯᠡᠳᠦᠯ == | ||
<br> | <br> | ||
=== | === ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ === | ||
ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠ ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ | [[ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠ]] ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠤᠶᠤ <span style="writing-mode: horizontal-tb;"><i>i</i></span> ᠲᠣᠭᠠᠨ ᠳ᠋ᠦ ᠦᠷᠡᠵᠢᠬᠦᠯᠦᠭᠰᠡᠨ ᠢᠢᠡᠷ᠄ | ||
<br><br> | |||
:<math>i\,(a + bi) = ai + bi^2 = -b + ai</math> | <span style="writing-mode: horizontal-tb;"> | ||
<br><math>i\,(a + bi)</math> | |||
<br><math> = ai + bi^2</math> | |||
<br><math> = -b + ai</math> | |||
</span> | |||
ᠭᠠᠷᠤᠮᠤᠢ᠃ | ᠭᠠᠷᠤᠮᠤᠢ᠃ | ||
| 30-р мөр: | 47-р мөр: | ||
ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢ<sup>vector</sup> ᠨᠠᠷᠠ ᠪᠤᠷᠤᠭᠤ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃ | ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢ<sup>vector</sup> ᠨᠠᠷᠠ ᠪᠤᠷᠤᠭᠤ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃ | ||
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ ᠨᠢ <span style="writing-mode: horizontal-tb;"><i>i</i></span> ᠲᠣᠭᠠᠨ ᠤ ᠤᠷᠪᠠᠭᠤ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠲᠡᠢ | ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ ᠨᠢ <span style="writing-mode: horizontal-tb;"><i>i</i></span> ᠲᠣᠭᠠᠨ ᠤ ᠤᠷᠪᠠᠭᠤ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ: | ||
<br><br> | |||
<span style="writing-mode: horizontal-tb;"> | |||
<br><math>\frac{1}{i} = \frac{1}{i} \cdot \frac{i}{i}</math> | |||
<br><math> = \frac{i}{i^2} = \frac{i}{-1}</math> | |||
<br><math> = -i</math> | |||
</span> | |||
ᠡᠭᠦᠨ ᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠬᠡᠷᠡᠭᠯᠡᠪᠡᠰᠦ: | ᠡᠭᠦᠨ ᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠬᠡᠷᠡᠭᠯᠡᠪᠡᠰᠦ: | ||
<br><br> | |||
<span style="writing-mode: horizontal-tb;"> | |||
<br><math>\frac{a + bi}{i} = -i\,(a + bi)</math> | |||
<br><math> = -a i - bi^2 = b - a i~.</math> | |||
</span> | |||
ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢ<sup>vector</sup> ᠨᠠᠷᠠ ᠵᠥᠪ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃ | ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢ<sup>vector</sup> ᠨᠠᠷᠠ ᠵᠥᠪ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃ | ||
| 42-р мөр: | 68-р мөр: | ||
===ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ=== | ===ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ=== | ||
ᠲᠣᠭᠠ ᠢᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ ᠨᠢ ᠮᠥᠴᠢᠯᠭᠡ ᠪᠡᠷ ᠳᠠᠪᠲᠠᠭᠳᠠᠬᠤ ᠰᠢᠨᠵᠢ ᠴᠢᠨᠠᠷ | <math>i</math> ᠲᠣᠭᠠ ᠢᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ ᠨᠢ ᠮᠥᠴᠢᠯᠭᠡ ᠪᠡᠷ ᠳᠠᠪᠲᠠᠭᠳᠠᠬᠤ ᠰᠢᠨᠵᠢ ᠴᠢᠨᠠᠷ ᠲᠠᠢ:<ref>MathBits Notebook. Cyclic Nature of the Powers of "''i ".''https://mathbitsnotebook.com/Algebra2/ComplexNumbers/CPPowers.html ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/07/03</ref> | ||
| 59-р мөр: | 86-р мөр: | ||
|<span style="writing-mode: horizontal-tb;"> i<sup>8</sup> = i<sup>4</sup> • i<sup>4</sup> = 1 • 1 = 1 | |<span style="writing-mode: horizontal-tb;"> i<sup>8</sup> = i<sup>4</sup> • i<sup>4</sup> = 1 • 1 = 1 | ||
|<span style="writing-mode: horizontal-tb;"> i<sup>9</sup>= i<sup>4</sup> • i<sup>4</sup> • i = 1 • 1• i = i | |<span style="writing-mode: horizontal-tb;"> i<sup>9</sup>= i<sup>4</sup> • i<sup>4</sup> • i = 1 • 1• i = i | ||
|<span style="writing-mode: horizontal-tb;"> i<sup>10</sup> = (i<sup>4</sup>)<sup>2</sup> • i<sup>2</sup> = 1 • (-1) =-1 | |<span style="writing-mode: horizontal-tb;"> i<sup>10</sup> = (i<sup>4</sup>)<sup>2</sup> • i<sup>2</sup> = 1 • (-1) = -1 | ||
|<span style="writing-mode: horizontal-tb;"> i<sup>11</sup> = (i<sup>4</sup>)<sup>2</sup> • i<sup>3</sup> = 1 • (-i) = -i | |<span style="writing-mode: horizontal-tb;"> i<sup>11</sup> = (i<sup>4</sup>)<sup>2</sup> • i<sup>3</sup> = 1 • (-i) = -i | ||
|} | |} | ||
ᠡᠭᠦᠨ ᠢ ᠶᠡᠷᠦᠩᠬᠡᠢᠢᠯᠡᠭᠰᠡᠨ ᠬᠡᠯᠪᠡᠷᠢ ᠪᠡᠷ ᠪᠢᠴᠢᠪᠡᠯ᠄ | |||
<span style="writing-mode: horizontal-tb;"> | |||
<br><math>i^{4n} = 1</math> | |||
<br><math>i^{4n+1} = i</math> | |||
<br><math>i^{4n+2} = -1</math> | |||
<br><math>i^{4n+3} = -i</math> | |||
<br><br><span style="writing-mode: vertical-lr;"> | |||
ᠡ᠊ᠨᠳᠡ ᠡᠴᠡ᠄ | |||
<math>i^n = i^{(n \bmod 4)}</math> | |||
</span></span> | |||
ᠡᠩ ᠦᠨ ᠢᠢᠡᠷ ᠠᠷᠭᠠᠴᠢᠯᠠᠪᠠᠰᠤ᠂ <span style="writing-mode: horizontal-tb;"><i>i</i></span> ᠲᠣᠭᠠᠨ ᠤ ᠵᠡᠷᠭᠡ ᠢᠢ ᠲᠣᠳᠤᠷᠬᠠᠶ᠋ᠢᠯᠠᠬᠤ ᠢᠢᠨ ᠲᠤᠯᠠᠳᠠ ᠡᠬᠢᠯᠡᠭᠡᠳ ᠢᠯᠡᠳᠬᠡᠭᠴᠢ ᠢᠢ<ref>ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ᠃ ᠬᠣᠶᠠᠳᠤᠭᠠᠷ ᠪᠣᠲᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ᠤᠨ ᠬᠡᠪᠯᠡᠯ ᠦᠨ ᠭᠠᠵᠠᠷ᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1970᠃</ref> <span style="writing-mode: horizontal-tb;">4</span> ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠮᠤᠢ᠃ | |||
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;">0</span> ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ <math>1</math>᠂ | |||
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;">1</span> ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ <math>i</math>᠂ | |||
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;">2</span> ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ <math>-1</math>᠂ | |||
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ <span style="writing-mode: horizontal-tb;">3</span> ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ <math>-i</math> | |||
ᠪᠠᠢᠢᠨᠠ ᠬᠡᠮᠡᠨ ᠲᠣᠭᠲᠠᠭᠠᠵᠤ ᠪᠣᠯᠤᠨᠠ᠃ | |||
ᠢᠢᠨ ᠬᠦ᠂ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠢᠢ ᠠᠯᠢᠮᠠᠳ ᠪᠦᠬᠦᠯᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠥᠭᠦᠯᠪᠡᠯ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ <math>1</math>᠂ <math>i</math>᠂ <math>-1</math>᠂ <math>-i</math> - ᠡᠳᠡᠭᠡᠷ ᠦᠨ ᠨᠢᠭᠡ ᠢᠮᠠᠭᠲᠠ ᠪᠠᠢᠢᠬᠤ ᠠᠵᠤᠭᠤ᠃ | |||
===<math>i</math> ᠲᠣᠭᠠ ᠢᠢ <math>i</math> ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ=== | |||
<br> | |||
<span style="writing-mode: horizontal-tb;"> | |||
<math>i^i = \left( e^{i (\pi/2 + 2k \pi)} \right)^i </math> | |||
<br> | |||
<math>= e^{i^2 (\pi/2 + 2k \pi)} </math> | |||
<br> | |||
<math>= e^{- (\pi/2 + 2k \pi)}</math> | |||
</span> | |||
ᠡᠭᠦᠨ ᠳ᠋ᠦ <span style="writing-mode: horizontal-tb;">''k'' ∈ ℤ</span> ᠪᠤᠶᠤ ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ ᠠ᠋ ᠢᠢᠨ ᠣᠯᠠᠨᠯᠢᠭ᠃ | |||
<span style="writing-mode: horizontal-tb;">''k'' = 0</span> ᠪᠠᠢᠢᠭ ᠠ᠋ ᠨᠥᠭᠦᠴᠡᠯ ᠳ᠋ᠦ ᠦᠨᠳᠦᠰᠦᠨ ᠤᠳᠬ ᠠ᠋ ᠨᠢ <span style="writing-mode: horizontal-tb;"><i>e</i><sup>−''π''/2</sup></span> ᠪᠤᠶᠤ ᠣᠢᠢᠷᠠᠯᠴᠠᠭ ᠠ᠋ ᠪᠠᠷ <span style="writing-mode: horizontal-tb;">0.207879576</span> ᠪᠣᠯᠤᠨ ᠠ᠋᠃<ref>David Wells. The Penguin Dictionary of Curious and Interesting Numbers. UK: Penguin Books 1997. ISBN=0-14-026149-4</ref><ref>Brilliant. What is i to the power of i. https://brilliant.org/discussions/thread/what-is-i-to-the-power-of-i-T. ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/017/04</ref> | |||
===ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠡᠴᠡ ᠢᠵᠠᠭᠤᠷ ᠭᠠᠷᠭᠠᠬᠤ=== | |||
<br> | |||
{| class="wikitable" | |||
|+ | |||
|[[File:3-root of imaginary unit,.svg|thumb]] | |||
|style = "height: 150px;"|<span style="writing-mode: horizontal-tb;"><i>i</i></span> ᠲᠣᠭᠠᠨ ᠤ ᠺᠦ᠋ᠪ<sup>cubic</sup> ᠢᠵᠠᠭᠤᠷ ᠨᠢ ᠭᠤᠷᠪᠠᠯᠵᠢᠨ ᠤ ᠣᠷᠣᠢ ᠨᠤᠭᠤᠳ ᠋ᠲᠤ ᠬᠠᠷᠠᠭᠠᠯᠵᠠᠮᠤᠢ᠃ | |||
|} | |||
<br> | |||
<math>i</math> ᠲᠣᠭᠠᠨ ᠤ <span style="writing-mode: horizontal-tb;"><i>n</i></span> ᠵᠡᠷᠭᠡ ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠨᠢ <span style="writing-mode: horizontal-tb;"><i>n</i></span> ᠲᠣᠭᠠᠨ ᠤ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠨ ᠠ᠋᠃ | |||
ᠬᠡᠳᠦᠨ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠬᠤ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ ᠠ᠋ ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳ᠋ᠤ ᠭᠠᠷᠬᠤ <span style="writing-mode: horizontal-tb;"><i>n</i></span>-ᠥᠨᠴᠦᠭᠲᠦ ᠢᠢᠨ ᠥᠨᠴᠦᠭ ᠦᠨ ᠲᠣᠭ ᠠ᠋ ᠪᠠᠷ ᠪᠠᠢᠢᠨ ᠠ᠋᠃<br><br> | |||
<span style="writing-mode: horizontal-tb;"> | |||
<br><small><math>u_k=\cos {\frac{{\frac{\pi}{2}} + 2\pi k}{n}} +i\ \sin {\frac{{\frac{\pi}{2}} + 2\pi k}{n}},</math> </small> | |||
<br><br><small><math>\quad k=0,1,...,n-1</math> </small> | |||
<br><br><span style="writing-mode: vertical-lr;"><math>i</math> ᠲᠣᠭᠠᠨ ᠤ <br>ᠺᠸᠠᠲᠷᠠᠲ <br>ᠢᠵᠠᠭᠤᠷ᠄</span> | |||
<br><small><math>\{\sqrt i\} = \left\{\frac{1+i}\sqrt2; ~\frac{-1-i}\sqrt2 \right\}</math> </small> | |||
<br><br><span style="writing-mode: vertical-lr;"><math>i</math> ᠲᠣᠭᠠᠨ ᠤ <br>ᠺᠦᠪ <br>ᠢᠵᠠᠭᠤᠷ᠄</span> | |||
<br><small><math>\{\sqrt[3]i\} = \left\{-i;~\frac{i+\sqrt3}2;~ \frac{i-\sqrt3}2\right\}.</math></small> | |||
</span> | |||
===<math>i</math> ᠲᠣᠭᠠᠨ ᠡᠴᠡ <math>i</math> ᠵᠡᠷᠭᠡ ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠭᠠᠷᠭᠠᠬᠤ=== | |||
<br> | |||
<span style="writing-mode: horizontal-tb;"> | |||
<br><math>\sqrt[i]{i} | |||
= i^{\frac{1}{i}\frac{i}{i}} | |||
= i^{-i}</math> | |||
<br><math>= \biggl(e^{{i}\frac{\pi}{2}}\biggr)^{-i}</math> | |||
<br><math>= e^{-i^2\frac{\pi}{2}} | |||
= e^{\frac{\pi}{2}}</math> | |||
</span> | |||
==ᠨᠡᠷ ᠡ᠋ ᠲᠣᠮᠢᠶᠠᠯᠠᠯ== | |||
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ - imaginary unit - мнимая единица | |||
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠲᠣᠭ ᠠ᠋ - imaginary number - чисто мнимое число | |||
ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ ᠠ᠋ (ᠬᠠᠪᠰᠤᠷᠠᠭᠰᠠᠨ ᠲᠣᠭ ᠠ᠋) - complex number - комплексное число | |||
ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ ᠠ᠋ - real number - вещественное число (действительное число) | |||
ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ - multiplication - умножение | |||
ᠬᠤᠪᠢᠶᠠᠬᠤ - division - деление | |||
ᠵᠡᠷᠭᠡ - power - степень | |||
ᠢᠵᠠᠭᠤᠷ - root - корень | |||
ᠢᠯᠡᠳᠬᠡᠭᠴᠢ - exponent - экспонента | |||
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ - remainder - остаток | |||
ᠣᠯᠠᠨᠯᠢᠭ - set - множество | |||
ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ ᠠ᠋ - integer - целое число | |||