ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠣᠯ ᠥᠪᠡᠷ ᠲᠦ ᠢᠨᠦ ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠳ᠋ᠦ -1 ᠭᠠᠷᠳᠠᠭ ᠲᠣᠭ ᠠ᠋ ᠶᠤᠮ᠃
ᠥᠭᠡᠷ ᠡ᠋ ᠪᠡᠷ ᠬᠡᠯᠡᠪᠡᠯ ᠻᠸᠠᠲᠷᠠᠲ᠋ ᠵᠡᠷᠭᠡ ᠢᠨᠦ -1 ᠤᠳᠬ ᠠ᠋ ᠠᠪᠳᠠᠭ (i2 = -1) ᠲᠣᠭ ᠠ᠋ ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠨ ᠡ᠋᠃
ᠪᠠᠰᠠ -1 ᠢᠢᠨ ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ ᠠᠨᠤ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠵᠦ ᠬᠡᠯᠡᠵᠦ ᠪᠣᠯᠤᠨ ᠠ᠋:
ᠠᠩᠭᠯᠢ ᠪᠠᠷ imaginary unit, ᠣᠷᠤᠰ ᠢᠢᠠᠷ мнимая единица ᠬᠡᠮᠡᠬᠦ ᠡᠨᠡ ᠤᠬᠠᠭᠳᠠᠬᠤᠨ ᠠᠨᠤ ᠲᠥᠰᠦᠭᠡᠯᠡᠯ ᠨᠢᠭᠡᠴᠡ᠂ ᠲᠥᠰᠦᠭᠡᠯᠡᠭᠰᠡᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠣᠭᠤᠰᠤᠨ ᠨᠢᠭᠡᠴᠡ᠂ ᠬᠡᠢᠢᠰᠪᠦᠷᠢ ᠨᠢᠭᠡᠴᠡ ᠭᠡᠰᠡᠨ ᠤᠳᠬ ᠠ᠋ ᠲᠠᠢ᠃
ᠬᠠᠯᠨᠮᠠᠭ ᠲᠦᠮᠡᠨ imaginary number ᠬᠡᠮᠡᠬᠦᠢ ᠢᠢ ухалдаг тойг (ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠲᠣᠭᠠ) ᠬᠡᠮᠡᠨ ᠪᠠᠭᠤᠯᠭᠠᠭᠰᠠᠨ ᠪᠠᠢᠢᠬᠤ ᠲᠤᠯᠠ imaginary unit ᠭᠡᠳᠡᠭ ᠢ ᠪᠠᠰᠠ "ᠤᠬᠠᠭᠠᠯᠠᠳᠠᠭ ᠨᠢᠭᠡᠴᠡ" ᠭᠡᠵᠦ ᠪᠠᠭᠤᠯᠭᠠᠳᠠᠭ ᠪᠤᠢ ᠵᠠ᠃
ᠨᠥᠭᠦᠭᠡᠲᠡᠭᠦᠷ᠂ ᠪᠤᠶᠤ ᠬᠠᠰᠠᠬᠤ ᠨᠢᠭᠡ ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠤᠨ ᠰᠢᠢᠳᠦᠯ ᠢᠨᠦ i ᠲᠡᠳᠦᠢ ᠦᠭᠡᠢ ᠪᠠᠰᠠ -i ᠪᠠᠢᠢᠬᠤ ᠶᠤᠮ᠃[1]
ᠬᠠᠷᠢᠨ комплексное число ᠭᠡᠳᠡᠭ ᠢ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷᠡ ᠲᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ ᠳ᠋ᠤ "ᠬᠠᠪᠰᠤᠷᠠᠭᠰᠠ ᠲᠣᠭᠠ" (ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰcomplex ᠲᠣᠭᠠ) ᠬᠡᠮᠡᠵᠦᠬᠦᠢ᠃[2]
ᠵᠠᠷᠢᠮ ᠦᠢᠯᠡᠳᠦᠯ
ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ
ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠ ᠢᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠷᠴᠡ ᠪᠤᠶᠤ i ᠲᠣᠭᠠᠨ ᠳ᠋ᠦ ᠦᠷᠵᠢᠬᠦᠯᠦᠭᠰᠡᠨ ᠢᠢᠡᠷ᠄
ᠭᠠᠷᠤᠮᠤᠢ᠃
ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢvector ᠨᠠᠷᠠ ᠪᠤᠷᠤᠭᠤ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠬᠤ ᠨᠢ i ᠲᠣᠭᠠᠨ ᠤ ᠤᠷᠪᠠᠭᠤ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠦᠷᠵᠢᠭᠦᠯᠬᠦ ᠲᠡᠢ ᠭᠠᠷ ᠨᠢᠭᠡᠨ:
ᠡᠭᠦᠨ ᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭᠠᠨ ᠳ᠋ᠤ ᠬᠡᠷᠡᠭᠯᠡᠪᠡᠰᠦ:
ᠡᠨᠡ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳᠡᠭᠡᠷᠡᠬᠢ ᠡᠬᠢᠯᠡᠯ ᠴᠡᠭ ᠢ ᠲᠣᠭᠤᠷᠢᠭᠤᠯᠤᠨ ᠸᠧᠺᠲ᠋ᠣᠷ ᠢvector ᠨᠠᠷᠠ ᠵᠥᠪ 90°ᠡᠷᠭᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠲᠡᠢ ᠠᠭᠠᠷ ᠨᠢᠭᠡᠨ ᠪᠤᠶ ᠠ᠋᠃
ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ
i ᠲᠣᠭᠠ ᠢᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ ᠨᠢ ᠮᠥᠴᠢᠯᠭᠡ ᠪᠡᠷ ᠳᠠᠪᠲᠠᠭᠳᠠᠬᠤ ᠰᠢᠨᠵᠢ ᠴᠢᠨᠠᠷ ᠲᠠᠢ:[3]
i0 = 1 | i1 = i | i2 = -1 | i3 = i2 • i = (-1) • i = -i |
i4 = i3 • i = (-i) • i = -i2 = 1 | i5 = i4 • i = 1 • (i) = i | i6 = i4 • i2 = 1 • (-1) =-1 | i7= i4 • i3 = 1 • (-i) = -i |
i8 = i4 • i4 = 1 • 1 = 1 | i9= i4 • i4 • i = 1 • 1• i = i | i10 = (i4)2 • i2 = 1 • (-1) = -1 | i11 = (i4)2 • i3 = 1 • (-i) = -i |
ᠡᠭᠦᠨ ᠢ ᠶᠡᠷᠦᠩᠬᠡᠢᠢᠯᠡᠭᠰᠡᠨ ᠬᠡᠯᠪᠡᠷᠢ ᠪᠡᠷ ᠪᠢᠴᠢᠪᠡᠯ᠄
ᠡ᠊ᠨᠳᠡ ᠡᠴᠡ᠄
ᠡᠩ ᠦᠨ ᠢᠢᠡᠷ ᠠᠷᠭᠠᠴᠢᠯᠠᠪᠠᠰᠤ᠂ i ᠲᠣᠭᠠᠨ ᠤ ᠵᠡᠷᠭᠡ ᠢᠢ ᠲᠣᠳᠤᠷᠬᠠᠶᠢᠯᠠᠬᠤ ᠢᠢᠨ ᠲᠤᠯᠠᠳᠠ ᠡᠬᠢᠯᠡᠭᠡᠳ ᠦᠵᠡᠭᠦᠯᠦᠭᠴᠢ ᠢᠢ[4] 4 ᠳ᠋ᠦ ᠬᠤᠪᠢᠶᠠᠮᠤᠢ᠃
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 0 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ 1᠂
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 1 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ i᠂
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 2 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ -1᠂
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ ᠢᠨᠦ 3 ᠲᠡᠢ ᠲᠡᠩᠴᠡᠬᠦ ᠠᠪᠠᠰᠤ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠦᠭᠰᠡᠨ ᠦ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ -i
ᠪᠠᠢᠢᠨᠠ ᠬᠡᠮᠡᠨ ᠲᠣᠭᠲᠠᠭᠠᠵᠤ ᠪᠣᠯᠤᠨᠠ᠃
ᠢᠢᠨ ᠬᠦ᠂ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠢᠢ ᠠᠯᠢᠮᠠᠳ ᠪᠦᠬᠦᠯᠢ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠥᠭᠦᠯᠪᠡᠯ ᠬᠠᠷᠢᠭᠤ ᠠᠨᠤ 1᠂ i᠂ -1᠂ -i - ᠡᠳᠡᠭᠡᠷ ᠦᠨ ᠨᠢᠭᠡ ᠢᠮᠠᠭᠲᠠ ᠪᠠᠢᠢᠬᠤ ᠠᠵᠤᠭᠤ᠃
i ᠲᠣᠭᠠ ᠢᠢ i ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ
ᠡᠭᠦᠨ ᠳ᠋ᠦ k ∈ ℤ ᠪᠤᠶᠤ ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ ᠠ᠋ ᠢᠢᠨ ᠣᠯᠠᠨᠯᠢᠭ᠃
k = 0 ᠨᠥᠭᠦᠴᠡᠯ ᠳ᠋ᠦ ᠦᠨᠳᠢᠰᠦᠨ ᠤᠳᠬ ᠠ᠋ ᠨᠢ e−π/2 ᠪᠤᠶᠤ ᠣᠢᠢᠷᠠᠯᠴᠠᠭ ᠠ᠋ ᠪᠠᠷ 0.207879576 ᠪᠣᠯᠤᠨ ᠠ᠋᠃[5][6]
ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠡᠴᠡ ᠢᠵᠠᠭᠤᠷ ᠭᠠᠷᠭᠠᠬᠤ
i ᠲᠣᠭᠠᠨ ᠤ n ᠵᠡᠷᠭᠡ ᠢᠢᠨ ᠢᠵᠠᠭᠤᠷ ᠨᠢ n ᠲᠣᠭᠠᠨ ᠤ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠨ ᠠ᠋᠃
ᠬᠡᠳᠦᠨ ᠬᠠᠷᠢᠭᠤ ᠲᠠᠢ ᠪᠠᠢᠢᠬᠤ ᠨᠢ ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ ᠠ᠋ ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠳ᠋ᠤ ᠭᠠᠷᠬᠤ n-ᠥᠨᠴᠦᠭᠲᠦ ᠢᠢᠨ ᠥᠨᠴᠦᠭ ᠦᠨ ᠲᠣᠭ ᠠ᠋ ᠪᠠᠷ ᠪᠠᠢᠢᠨ ᠠ᠋᠃
ᠲᠣᠭᠠᠨ ᠤ
ᠺᠸᠠᠲᠷᠠᠲ
ᠢᠵᠠᠭᠤᠷ᠄
ᠲᠣᠭᠠᠨ ᠤ
ᠺᠦᠪ
ᠢᠵᠠᠭᠤᠷ᠄
ᠨᠡᠷ ᠡ᠋ ᠲᠣᠮᠢᠶᠠᠯᠠᠯ
ᠦᠵᠡᠭᠦᠯᠦᠭᠴᠢ - exponent - экспонента
ᠦᠯᠡᠳᠡᠭᠳᠡᠯ - remainder - остаток
ᠣᠯᠠᠨᠯᠢᠭ - set - множество
ᠪᠦᠬᠦᠯᠢ ᠲᠣᠭ ᠠ᠋ - integer - целое число
ᠡᠬᠢ ᠰᠤᠷᠪᠤᠯᠵᠢ
- ↑ James Tamton. Encyclopedia of Mathematics. Facts on File Inc. New York 2005. ISBN 0-8160-5124-0
- ↑ ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ᠤᠨ ᠬᠡᠪᠯᠡᠯ ᠦᠨ ᠬᠡᠷᠡᠭ ᠡᠷᠬᠢᠯᠡᠬᠦ ᠬᠣᠷᠢᠶ ᠠ᠋᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1964᠃
- ↑ MathBits Notebook. Cyclic Nature of the Powers of "i ".https://mathbitsnotebook.com/Algebra2/ComplexNumbers/CPPowers.html ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/07/03
- ↑ ᠡ᠊᠂ ᠸᠠᠩᠳᠤᠢ᠃ ᠣᠷᠤᠰ-ᠮᠣᠩᠭᠤᠯ ᠨᠡᠷ ᠡ᠋ ᠮᠣᠮᠢᠶᠠᠨ ᠤ ᠲᠣᠯᠢ᠃ ᠬᠣᠶᠠᠳᠤᠭᠠᠷ ᠪᠣᠲᠢ᠃ ᠪᠦ᠊᠂ ᠨᠠ᠊᠂ ᠮᠣ᠊᠂ ᠠ᠊᠂ ᠤ᠊᠂ ᠤᠨ ᠰᠢᠨᠵᠢᠯᠡᠬᠦ ᠤᠬᠠᠭᠠᠨ ᠤ ᠠᠻᠠᠳᠧᠮᠢ᠃ ᠬᠡᠯᠡ ᠵᠣᠬᠢᠶᠠᠯ ᠤᠨ ᠬᠦᠷᠢᠶᠡᠯᠡᠩ᠃ ᠤᠯᠤᠰ ᠤᠨ ᠬᠡᠪᠯᠡᠯ ᠦᠨ ᠭᠠᠵᠠᠷ᠃ ᠤᠯᠠᠭᠠᠨᠪᠠᠭᠠᠲᠤᠷ 1970᠃
- ↑ David Wells. The Penguin Dictionary of Curious and Interesting Numbers. UK: Penguin Books 1997. ISBN=0-14-026149-4
- ↑ Brilliant. What is i to the power of i. https://brilliant.org/discussions/thread/what-is-i-to-the-power-of-i-T. ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/017/04