Jump to content

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ ᠠ

Wikibilig-с
11:54, 1 Есдүгээр сар 2021-ий байдлаарх Angka (хэлэлцүүлэг | оруулсан хувь нэмэр) хэрэглэгчийн хийсэн залруулга

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ ‍ᠠ᠋ ᠨᠢ ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ᠎ ‍᠋ᠠ᠋ ‍ᠢᠢᠨ ᠣᠯᠠᠨᠯᠢᠭ ‍ᠢ ᠥᠷᠭᠡᠵᠢᠯᠦᠯᠵᠦ᠂ $ x^{2}+1=0 $ ᠲᠡᠭᠰᠢᠳᠬᠡᠯ ‍ᠢ ᠰᠢᠢᠳᠦᠯ ᠲᠡᠢ ᠪᠣᠯᠭᠠᠭᠰᠠᠨ ᠣᠯᠠᠨᠯᠢᠭ ᠶᠤᠮ᠃

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢ a + bi ᠬᠡᠯᠪᠡᠷᠢ ᠪᠡᠷ ᠢᠯᠡᠷᠡᠬᠡᠢᠢᠯᠡᠵᠦ ᠪᠣᠯᠬᠤ ᠪᠡ ᠡᠭᠦᠨ ᠳᠦ ᠨᠢ a ᠪᠣᠯᠤᠨ b ᠨᠢ ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ᠎ ‍ᠠ᠋᠂ i ᠨᠢ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠨᠢᠭᠡᠴᠡ ᠪᠢᠭᠡᠳ i2 = −1 ᠲᠡᠭᠰᠢᠳᠬᠡᠯ ‍ᠦᠨ ᠰᠢᠢᠳᠦᠯ ‍ᠢ ᠬᠠᠩᠭᠤᠭᠰᠠᠨ ᠤᠳᠬ ‍ᠠ᠋ ᠲᠠᠢ ᠪᠠᠢᠢᠨ᠎ ‍ᠠ᠋᠃


ᠳᠦᠷᠡᠰᠦᠯᠡᠯ

ᠺᠣᠮᠫ᠊ᠯᠧᠺᠰ ᠲᠣᠭ᠎ᠠ ‍ᠢᠢᠨ ᠬᠠᠪᠲᠠᠭᠠᠢ ᠨᠢ ᠬᠡᠪᠲᠡᠭᠡ ᠲᠡᠩᠬᠡᠯᠭᠡ ᠪᠠ ᠪᠣᠰᠤᠭ᠎ ‍ᠠ᠋ ᠲᠡᠩᠬᠡᠯᠭᠡ ᠡᠴᠡ ᠪᠦᠷᠢᠳᠦᠳᠡᠭ᠃

ᠬᠠᠭᠤᠷᠮᠠᠬ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ ‍ᠢᠢᠨ ᠣᠯᠠᠨᠯᠢᠭ ᠪᠣᠰᠤᠭ᠎ ‍ᠠ᠋ ᠲᠡᠩᠬᠡᠯᠭᠡ ᠳ᠋ᠦ ᠪᠠᠢᠢᠷᠢᠰᠢᠳᠠᠭ᠃

ᠬᠡᠪᠲᠡᠭᠡ ᠲᠡᠩᠬᠡᠯᠭᠡ ᠳ᠋ᠦ ᠪᠣᠳᠠᠲᠤ ᠲᠣᠭ᠎ ‍ᠠ᠋ ‍ᠢᠢᠨ ‍ᠢ ᠪᠠᠢᠢᠷᠢᠰᠢᠭᠤᠯᠳᠠᠭ᠃


ᠦᠢᠯᠡᠳᠦᠯ

ᠨᠡᠮᠡᠬᠦ

ᠬᠣᠶᠠᠷ ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎‍ᠠ᠋ ‍ᠢᠢ ᠨᠡᠮᠡᠬᠦ ᠳ᠋ᠦ ᠪᠡᠨ ᠪᠣᠳᠠᠲᠤ ᠬᠡᠰᠡᠭ ‍ᠦᠳ ‍ᠢ ᠬᠣᠭᠤᠷᠤᠨᠳᠤ ᠨᠢ ᠨᠡᠮᠡᠵᠦ᠂ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠬᠡᠰᠡᠭ ‍ᠦᠳ ‍ᠢ ᠬᠣᠭᠤᠷᠤᠨᠳᠤ ᠨᠢ ᠨᠡᠮᠡᠨ᠎ ‍ᠡ᠋᠃[1]


$ (a+bi)+(c+di)= $ $ =(a+c)+(b+d)i $



ᠬᠠᠰᠤᠬᠤ

ᠨᠢᠭᠡ ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎‍ᠠ᠋ ᠡᠴᠡ ᠨᠥᠭᠦᠳᠡ ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠬᠠᠰᠠᠬᠤ ᠳ᠋ᠦ ᠪᠡᠨ ᠪᠣᠳᠠᠲᠤ ᠬᠡᠰᠡᠭ ᠪᠠ ᠬᠠᠭᠤᠷᠮᠠᠭ ᠬᠡᠰᠡᠭ ‍ᠦᠳ ‍ᠢ ᠲᠤᠰ ᠪᠦᠷᠢ ᠬᠠᠰᠤᠶᠤ᠃[1]


$ (a+bi)-(c+di)= $ $ =(a-c)+(b-d)i $


ᠦᠷᠡᠵᠢᠬᠦ

ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎‍ᠠ᠋ ‍ᠢᠢ ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠳ᠋ᠦ ᠦᠷᠡᠵᠢᠭᠦᠯᠬᠦ ᠦᠢᠯᠡᠳᠦᠯ ‍ᠦᠨ ᠰᠡᠯᠭᠦᠬᠦ (commutative)᠂ ᠪᠦᠯᠦᠭᠯᠡᠬᠦ (associatove)᠂ ᠵᠠᠳᠠᠯᠬᠤ (distributive) ᠴᠢᠨᠠᠷ ‍ᠤᠳ ᠦᠢᠯᠡᠴᠢᠯᠡᠳᠡᠭ ᠃[2]


$ (a+bi)(c+di)= $ $ =ac+bci-bd+adi= $ $ =(ac-bd)+(bc+ad)i $


ᠬᠤᠪᠢᠶᠠᠬᠤ

ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭᠠᠨ ‍ᠳᠤ ᠦᠢᠯᠡᠳᠦᠯ ᠭᠦᠢᠴᠡᠳᠬᠡᠬᠦ ᠳ᠋ᠦ ᠪᠡᠨ ᠬᠤᠪᠢᠶᠠᠭᠴᠢ ‍ᠢᠢᠨ ᠬᠣᠣᠰᠮᠠᠭ ᠲᠣᠭ᠎‍ᠠ᠋ ‍ᠢᠢ ᠠᠰᠢᠭᠯᠠᠳᠠᠭ᠃ ᠬᠤᠪᠢᠶᠠᠷᠢ ‍ᠢᠢᠨ ᠬᠣᠣᠰᠮᠠᠭ ‍ᠢᠢᠠᠷ ᠬᠦᠷᠲᠡᠪᠦᠷᠢ ᠪᠠ ᠬᠤᠪᠢᠶᠠᠷᠢ ‍ᠢᠢ ᠦᠷᠡᠵᠢᠭᠦᠯᠳᠡᠭ᠃


$ {\frac {a+bi}{c+di}}= $ $ ={\frac {\left(a+bi\right)\left(c-di\right)}{\left(c+di\right)\left(c-di\right)}}= $ $ ={\frac {ac+bd}{c^{2}+d^{2}}}+\left({\frac {bc-ad}{c^{2}+d^{2}}}\right)i. $


ᠻᠸᠠᠲᠷᠠᠲ ᠵᠡᠷᠭᠡ

ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎‍ᠠ᠋ ‍ᠢᠢ ᠻᠸᠠᠲᠷᠠᠲ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠬᠦ ᠳ᠋ᠦ ᠪᠡᠨ ᠥᠪᠡᠷ ‍ᠢ ᠢᠨᠦ ᠥᠪᠡᠷ ᠲᠦ ᠢᠨᠦ ᠦᠷᠡᠵᠢᠭᠦᠯᠦᠨ᠎‍ᠡ᠋᠃[3]


$ (x+yi)^{2}=x^{2}-y^{2}+2xyi. $


ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ

ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎ᠠ a + bi (with b ≠ 0) ‍ᠢᠢᠨ ᠻᠸᠠᠲᠷᠠᠲ ᠢᠵᠠᠭᠤᠷ ᠠᠨᠤ $ \pm (\gamma +\delta i) $ ᠪᠠᠢᠢᠬᠤ ᠠᠭᠠᠳ ᠡᠭᠦᠨ ᠳ᠋ᠦ᠄ $ \gamma ={\sqrt {\frac {a+{\sqrt {a^{2}+b^{2}}}}{2}}} $ ᠪᠠ $ \delta =(\operatorname {sgn} b){\sqrt {\frac {-a+{\sqrt {a^{2}+b^{2}}}}{2}}} $ ᠪᠣᠯᠤᠮᠤᠢ᠃ sgn B ᠭᠡᠭᠴᠢ ᠢᠨᠦ $ \operatorname {sgn} B={\begin{cases}\ \ 1,&B>0\\\ \ 0,&B=0\\-1,&B<0\end{cases}} $ ᠭᠡᠵᠦ ᠲᠠᠢᠢᠯᠠᠭᠳᠠᠨ᠎ᠠ᠃

ᠡᠭᠦᠨ ‍ᠢ ᠪᠠᠲᠤᠯᠠᠬᠤ ‍ᠢᠢ ᠲᠤᠬᠠᠢᠢᠲᠠ ᠳ᠋ᠤ $ \pm (\gamma +\delta i) $ ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠻᠸᠠᠲᠷᠠᠲ ᠵᠡᠷᠭᠡ ᠳ᠋ᠦ ᠳᠡᠪᠰᠢᠭᠦᠯᠵᠦ a + bi ᠲᠣᠭ᠎ᠠ ‍ᠢᠢ ᠭᠠᠷᠭᠠᠵᠤ ᠢᠷᠡᠬᠦ ᠶᠣᠰᠤᠲᠠᠢ᠃


ᠬᠡᠷᠡᠭᠯᠡᠭᠡ

ᠨᠡᠷ ‍ᠡ᠋ ᠲᠣᠮᠢᠶᠠᠯᠠᠯ

ᠡᠬᠢ ᠰᠤᠷᠪᠤᠯᠵᠢ

  1. Jump up to: 1.0 1.1 ᠰᠡᠷᠳᠠᠮᠪᠠ ᠪᠥᠬᠡᠪᠠᠲᠤ᠃ ᠺᠣᠮᠫᠯᠧᠺᠰ ᠲᠣᠭ᠎ᠠ᠃ Geogebra. https://www.geogebra.org/m/CwryWtd9?fbclid=IwAR0i1VN-HH5hegFJoWMjgCM9si7zH7x9hHDuEbU6iROuW3gbqIAeMGngvAs#material/nLiRDrsU ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/08/17
  2. Виленкин Н. Я., Ивашов-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 11 класса. Учебное пособие. — Изд. 6-е. — М.: Просвещение, 1998. — 288 с. — ISBN 5-09-008036-4.
  3. Math is Fun. https://www.mathsisfun.com/algebra/complex-number-multiply.html ᠬᠠᠨᠳᠤᠭᠰᠠᠨ 2021/09 01